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Sotalined is icrn %o the vreoblem of defining a small velccity innomo-

zeresisy Ifrem ted wave Tield »rscorded bty 3z multielement system 2L re-

o ers wit: excitation of identical sources. The effact of sccu-

m ticn due finition of the source data allows implementation of 3 CDP

E dach to supvress nultiply scattered wave interference in visualizing ran-

dom velocity inhomogeneities. The effectiveness of the constructed algorithm

is verified by numerical modeling.

AT the »rs rie one of the main methods of proce cration
15 ths common dect int (CDP) method [7-97. This metho , o stservar
2 multizle overla z Summation 9f seismic Sraces fro Trz me curvas so
with =ne procedure analyzing the veloccity spectrum leads o amplification of =h=
siznal and suppression of multiply reflected wave interference. These.advantages o
CDP method let us reconstruct smooth, almost horizontal interfaces of the inhomogen
of the investigated stratified media.

However, the CDP method in essence does not use dynamic characteristics of reflected
waves. Therefore, it does not always reconstruct sharo irregular velocity variations
which lead to diffraction scattering of sounding signals. Because of this it is inter-
esting to create a method of orocessing which would preserve the advantages of the D7
metvnod considering the wave nature of the scattering orocess, would »econ-
struct interfaces and the sharp inhomogeneities of the investigatad me
Witi work discusses for the wave equation the oroblsm of defining
fin enelty Ifrom the field which is scattered at this inkc en
rec nment areal system of receivers with successive switeh of
cal

g of a vertically incident vlane wav
in [3-5], which derived theorems of =2xi
D
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o
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ness. at a the
velocity function along some contour in a complex plane. However, part of %his
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centour
lies not on the real axis, but assumes complex values; therefore in evaluating the in-
verse Fourier transform the integral over this area of the contour has poor noise-
resistance whichexponentially deteriorateswith depth. Varying theangle ofincidence of the
wave, we can, of course, obtain the spectrum of the sought function on the real axis,
but in this case we are unable to implement the nrocedure of accumulation of the sought
function, which is so effective in the CDP method. ;

In the present work we have obtained a new, rigorous solution of the problem of de-
fining a weak velocity inhomogeneity from a diffracted wave field recorded by a2 multiele-
ment system of sources and receivers. It is shown that this solution lets us not onlv
calculate the velocity variation in a stable manner, but also imolement the orocedure of
accumulation. The result obtained 1s a natural form of the solution to the problem for
recording systems of multiple overlaponineg. The effect of accumulation of the sought func-

tion due to the redefinition of the source data opens the way for the use of a method simi-
lar to the CDP method in order to suppress multiply scattered wave intesrferencs in the
visuallization of random (not weak) velocity inhomogeneities. We will give some numerical
examples of the visualization of such inhomogeneities which illustrate the rrovosed al-
gorithm. The author delisves that this method can be useful for nractical rrocesasine af
selsmic =xploration dat lizatedlr strucrired

e

a with visualization of deev-zeated and comn
inhomogeneities of the investiratred media.
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The alzorithm oronosed was first descrived 2y the autiaer in 1280 727,

PROBLEZI: FORITULATION

We will now 1ok as <he -nverse oroblem of diffractisn 57 sound waves crepagating in
20 unbounded medium wish velocisy 2 at an inhomogeneous inclusion whion occuries a limisad
region ¢ (Fig. 1). The wave field u = u(r, Pys t) is excited at the =ime - = 0 by a voint«
pulse source located onthe Planez = 0 at the point Py =(xo, yj) and 1s described by the
equation

{
A==+ a ()] uy = 8(r— p,)5(z). (D

We will pose the problem of defining the function a(r) from a scattered field u(p,

0., £), xnown on the vlane z = 0 for different vositions of the source and receiver Ve
U
ccumuiation of the souchs

ST2 that <shese data are redundant; this will be used for the a
1

dw. _ ..
u(r, p, t) = fﬁ.e—“"'u (r, gy t) (2)

Se the Fourier revresentation of the wave field. Each of the harmonics of the wave f
3] sfies the Felmholtz equation, which with consideration of the conditio

r, fgs W) sa

~~

ti
adiation is equivalent, as we Know, to the intecral equation

'ty

u(r, ry, k) = Go(kjr —r,]) — ksjndl"u(l'y ', Ka(r')Gy(kir, — r'|. (3)

G

her (kr) = -exp(ikr)/(L4mr) is the Green function for a homogeneous svace, and k = w/c

e
0
is the wave number. It is also easy to be convinced that the following equation is valig:

u(r, ro, k) = Gy(kir — r,)) — k*ufdr’Go(k[r — r'a(c" )Gy (k| — rol) +
A A
-~ k“‘v\ dr'de’Gy(k|r — r"a(r")u(r", ', R)a(e)Golk|r" — r,)). &)

actually, substituting expression (4) into the Zelmholtsz 2quation and using (3), we obtza<n
an .identity.

The Green function Ga(x]r - rol) describes the provagation of a wave in & homogen=acus
svace from the point o to the point r; therefore the first term in the right side of re-

lationship (4) corresponds to a direct wave. The second term of this relationship de-
scribes the propagation of a wave from the point ro to the point r', scattering at the

point r' with amplitude a(r'), and then the passage of the wave from thepoint r' to the
observation point r. This term describes a singly scattered wave. Finally, the last term
corresponds to waves of higher multiples of Scattering. We will consider, as in the CDP
method, that singly scattered waves are informative waves, whereas multiply scattered waves
are wave interference. We must determine and by using the data redundancy accumulate the
sought function a(r) with respect to singly scattered waves, assuming that the procedures
of accumulating and sorting velocities will bermit suppression of multiply scattered

waves. This assumption can evidently be confirmed only empirically. Rigorous es-
timates of the contribution of multiple waves will be presented below only for weak
velocity inhomogeneities a(r), i.e., in the Rayleigh~Born approximation.

Thus, we have the problem of defining the function a(r) from the eguation

o, 0o F) = —k [ Go(klp — 1’ a(r’)Go(k|x’ — po) (5)

according to the function v(p, CRY k) = u(p, Py> k) - Go(k{p - pg|). We carry out Fourier
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Fig. 1. Scattering of sound
wave at inhomogeneous inclusion
Ty 0, and p are points of the

cosition of the source and re-
ceiver on the pnlane z = 0.

transformation of equation (5) with respect to variables p and OO Having used the formul

from [1]
Vdpexp (ixo = i[ k1 V DT+ ) (0* + 397V =
== p(=ilz| V=), (63
we obtain .
v (%, % k)=.f_ = g‘d.. e\,p +iz ’(V/::_A- +
T YR 2 V% —ui

+ Vﬁlﬁ — Ao)] a(# + %, ).

Here the branches of the roots should be selected such that ViE— #= =
<] < «, and the upver and lower signs correspond to the cases of k >
ncte that the integral with respect to the variable z' in the right si
{7) has the form of 2 Fourier integral. If kis variedfrom -« £o +«, th

p== U/kt—w:+ Vk*—xﬂ describes in 2 complex pnlane some contour C which
(-—°° ’“V!"'_/o) (V|»c'—-40l 00) of the real axis and semicircumference o
which lies in the upper halfplane. Thus, relationship (7) allows us for
to eXPrﬂss the Fourier image of a(k + Kgo p) of the sought function a(r) interms of the
known function v(p, po, k). For this we look at the inverse Fourier transform:

r
ap . _;
a + %y, z) = _)-—-e P (% + %,, p). (8)

2
We will now deform the path of integration to the contour C. Having replaced the variable

p==t(V%:*“‘+l/kL—%ﬂ for the area of the contourwhich liesin the halfplanes Re p > 0 and
Re o < 0 respectively, and having used relationship (7), we obtain

a(e+ %y, )= [ak| k|- (VE== + VB =) x

O
~—

Xexp[; iz(Vk"'- ® 4+ k’——xﬁ)}v(%, %y, k). (

rom this for each fixed KO we have

—~1
n
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F iz(Vk‘-—x-‘ +V /;-——-x(,/]Ju(x, #g,y k).
We note that integral (10) has poor noise-resistance. For example, for the value

Ky = 0 (corresponding to a vertically incident plane wave) the branches of the roots in

the exponential cofactor are such that. if « > |k| we multiply v(x, 0, k) by the ex-
ponent exp z¥x°—k% which increases with the increase in z. The opresence of such inhomo-
zeneous waves leads to the fact that small errors in the source data can greatly alter
the result of the calculations.

The nresence in expression (10) of the free parameter Kq corresovonds to the redundancy
source data and lets us implement the vrccedure of accumulation of the sgught f%ngtion
ing =2donted the task of constructing an algorithm for defining the :unct:on.x<rg Srom

-ne entire aggregate of data v(p, Pyo k), we note that because oIl the reclprecity tnsoren

7(ps Py, 1) = v(p, Py, k). Therefore, both the variables p and p, and the corresvonding

spectral vectors k and 9 should enter this algorithm symmetrically. These considerations

remind us that to accumulate the sought function we should integrate both sides of expres-

sion (10) with respect to the variable Kqe However, in this case we obtaln divergent in-
a
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grals. The physical nature of these divergences is related to the circum
oy
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2ch point source scatters the waves at the inhomogenelty I' which have fi
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continualnumber of sources corresponds to infinitely iarge snergy, and thisi
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s
i
divergent integrals. TFor adequate physical formulation of the nroblem we
a2l systems of observation the excitation and recording of waves 1s accomp
es of a grid of points located in theaperture L x L with interval Ax betw
t
e
v
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1). The value of Ax defines the resolution of A ~ 1/K and the greates
ency K = 2m/Ax, which corresponds to this system of observation. More ©
ical analysis, carried out below, shows that if we discard inhomogeneous wa
the integrand of (10) by the factor
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m=[t+ o+ n2[(VE=Z +VE—x)]" (11)

egrate both sides of relationship (10) with respect to all nhysically 4i
K., Wwe obtain the sought operator of focusing

(f;emt—xaawz—uax

XD (%, %5, by T) U (%, %9, K) + c.c.,

(27)

Bﬂﬂ=%ﬂiﬁjﬁ%§
0

~
[
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where 98(x) is the Heaviside function,

D=kt (l.-"-‘+ ®%y + VE=F, Vk2 - u;';)m.exp [i (% + %) P —

—iz(VE=ZF+ VE )], (13)

and c.c. designates the complex conjugation of thepreceding term, here and henceforth: e
emphasize that we have not substantiated the transition from expression (lO)_to focusing
operator (12). Therefore, focusing operator (12) requires detailed mathematical study,

which we will carry out in the next section.
SUBSTANTIATION OF ALGORITHHM

In this section we will formulate and prove a properlyconditioned mathematical state-
ment which lets us substantiate algorithm (12) proposed above.

We will define the functions:




K
Ax(r)=-%_) dkf dx D9 (1 — ) 0 (A% — 53) X

@my* J (22)°

X[® (‘K, ”m kv l') + q)* (xv x!)? kv X’)],
ag (1) = [ dr' Ak (r — 1) a(x).

o £

Lemma limag(r)=a(r) for the random finite function a(r) e C=.
Koo

Proof. In integral (14) we will replace the variables % =kX, %y =hkXy, kb = KE .

Ag(r) = K*-f(Kp, Kz).
dere r = (p, z), and the function

1

ey | dx dx, — 2
po =2 fa [t [mrea— 90t~ )

XD (x, x4, 1, 3p, §2) + cc.

It is shown in the Appendix that the spectrum
F(x, p) = [dpdz exp (—ixp — ipz)f(p, 7)
of the function f(r) has the properties:

PO <1, F(s) =0 tor 8| > 1, F(s) =1 + 0(s?) 1o, Is] < 1.

fere s = («, p). Having used the theoren on the Fouriler transformation of the
of functions., we obtain

7l

(14)

T o

~
[

N
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(17)

(18)

(19)

convolution
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Fig. 3. Montage of traces of wave field scattered
on cylindrical inclusion with elliptical cross sec-
tion. The source is located at the point Xy =

= 6.4 knm, ¢y = 1 kxm/sec, ¢, = 0.9 km/sec.

ag (r) = 5‘(—2’%5 eistF (’75{) a(s).
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X
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m oroperties (19) of the spectrum F(s) it follows that the spectrum of th
r) ncides with the spectrum of the function a(r) for frequencies |s| < K. G
1

1imit X = = under the sign of the integral (20), we obtain the proof of the lemma.
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The function AK(r) is an approximation of the Dirac § function. From relationships
(19) it follows that the function ak(r) is obtained from the function a(r) as a result of
the local averaging of the latter with respect to volume with dimensions A ~ 1/X.

Theorem. LetM =sup|a(r)]| bethe contrastof thevelocity inhomogeneity, and 7 is the diam-
eter of the area I'. Then for the function

K
. 93 dv.  dx o " ,,
s ()= 7 [ | o T O (B =)0 (12 — ) x
0

(21)
XD (%, %y, K, £) U (%, Ryy k) + ccd

we have the bound: |ag (r) — ag(r)| << MKB.
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Proof. Wewill nowcalculate the Fourier transformationof relationship (4) withrespect o
the variables p and p naving used formula (%), we obtain:

Wwhere 9
1 K , ; ,
Vo (%, Rgy k) = —- = | dr' exXp | — i (% + %,) p’ =+
P VEDE k®—
U (22)
iz’ ( ViE—%+ V k- xﬁ)]a(r'),
{ 5 dr'de” ( oo
Sv (%, %g» k)zT __’_____,1/_7____' r'dr exp|{— ixp —
5 - k — % (23>
— (%0 =iz VE=&Exiz V k— u;';) a(®)u (", r', K)a(r).
¢ Will act on the spectrum of the diffracted field v(x, Kgo k) with intsgral sterator
(227 =5 2 result of the action of this operator on VO(K, Koo k) we cbtair functizcn
lK(r>’ Je estimate the result of the effect of operator (21) on Svik, Kgs ). For r,r=T

and |kl K the wave fleld satisfies the inequality.

1 1 g 1
— . — ‘A
L (r ro,k)!g_,m(!r_ll e [), (o)
2 2
wWrere = = TIXTQ. Having used this inequality and reizationshnip (23), we obtain <has lagr) —
= ag(r)| << e*- KL

We note that the function aK(r), which we calculate from the diffracted field, turns
out tc oe close to the local averaging aK(r) of the sought function a(r), if the varameter
«< 1. The smallness of this parameter is a condition of the applicability of the Ray-

- 3 V

S
leigh-Born approximation, which amounts to the fact that the veloclity inhomogenei

R e ‘ . . . el o 2

17 caistorts the incident and scattered waves. The condition £ = MK 1° «

2n the resclution A ~ 1/X of the definition of the “unction a(r) and the magritud
ccntrast of the inclusion M.

“AVE ANALOG OF THE CDP METHOD

The solution we obtained in the previous sectio
weak velocity inhomogeneities can form the basis for m n
{not wezak) inhomogeneities similar to the CDP method. Actually, this solution =
usss the observation system of multiple overlapoing. Averaging the calculated 7 zio
with respect to these redundant data not only increases its statistical reliability, but =2lso
lets us implement the ideology of the CDP method with consideration of the wave nature of

the sounding process. 1In this section we will present a discussion analogous to the stan-
dard explanations of the practical effectiveness of the CDP method and some numerical ex-
amples which illustrate the efficiency of the oroposed algorithm for visualizing strong
inhomogeneities.

The scattered wave field u(p, Py> k) will be represented in the form of the super-

position of the useful singly scattered waves and multiply scattered wave interference.

The structure of these waves is analogous to that of the corresponding terms in relation-
ship (4) with some effective propagation velocities. As a result of the action of focusing
operator (12) on singly scattered waves we obtain

Pr (r) = NV -ax (r), (25)

where N = L2/Ax2 is the number of points on the aperture which characterizes the degree of
redefinition of the source data. Thus, as a result of the action of focusing overator (12!
on singly scattered waves we obtain the accumulation of local averaging aK(r) of the sough*®
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Fig. 4. Result of reconstruction of cylindrical inclusion with circularcross

section, ey = 1 km/sec; ¢, = 2 km/sec.
Fiz. 5. Result of reconstruction of cylindrical inclusion with elliptical
cross section; ¢, = 1 km/sec, c,.= 0.9 xm/sec.
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function a(r), proportional to the degree of redefinition of the source data. This ac-
cumulation occurs due to cophasal summation of the useful signal, since operator (12) con-
siders the geometry of single scattering and compensates forthe osczllatlngfactors inex-
pression (22) which correspond to the temporal lags inthe propagation of incident and
scattered waves. For multiply scattered waves there is no such compensation and it seems
natural that the accumulation of these terms occurs, generally speaking, in some random
manner. This lets us assume that upon an increase in the recetition of overlapving 4 the
crovosed algorithm, together with the procedure of analysis of the velocity
7111 let us effectively visualize complicatedly structured inhomogeneous medl
requires further exrerimental confirmation.

In conclusion,we will describe some numerical experiments w he de-
scrived algoritnm. For simplicity all calculations were carried ane casa
The velocity of the enclosing medium ¢ was assumed ecual to 1 xm/sec. T b nce Ax
petween the points on the x axis at which the sources were placed a the attered fizlic
was calculated is equal to 0.1 km. The number of such points on the aperture N = o4,

2 = Ke = 30 rad/sec

a) Gently sloping and smooth velocity interfaces are typical structures for seismic
exploration. The simplest model of such boundaries is a reflecting plane. However, visu-
alization of sharp local velocity inhomogeneities is a very difficult task for the CDP
method. We considered amedium containing a scattering point located in the middle of the
aperture with abscissa X, = 3.2 km at a depth Vg = 1 km and a reflecting plane at the

depth Vo1 = 2 km. The wave field scattered at the point was modeled by'the expression
— — 3 2
Op (&) 70, B) = — 26y (k V(e — 2o + 33) G, (kV (@ — 2oF + 03) (26)

(compare with (4)); here Go(ko) = i/u-Hél)(kp) is the Green function of the Helmholtz equa-
I's

1
0 : Xg>
and receiver, located on the line y = 0; (xD, yo) are the coordinates of the scattering

tion on the plane, H (z) is the Hankel function; x are the abscissas of the source
point. The field reflected from the plane was calculated by the formula
Vor (2, 20, ) = Gy (k) E=7 + 432,), (27)
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The total field scattered by this system consists of four =
erent ray trajectories: source-point-receiver, source-vla

erms which correscvond to dif-

e-receiver, source-voint-
ne-receiver, and source-plane~point-recsiver. These fields were calculated for all &4
ions of the source and then ctrocessed. mhe vrocessing results are illust

i i rate
2, Wwhere “herosition ofcoth thescattering oint and che ereflecting planeis clearliyseen.

a

.

xamples 1llustrate the possibilitiss of the algorithm in recon-
c ity lnnomoveneltles cylindrical inclusions with circular (with

2 km) and ellipt;caL cross sections. The centers of these inclusions are located at
voint with coordinates x = 3.2 km, y = 3 km, the diameter of the major axis of the
pse D = 2 km, and the ratio of the major to minor axes D/d = 3. The scattered wave
1d was calculated according to the programs of Voronin [2]. We emphasize that for
e

models the parameter e ~ 103, i.e., much greater than one.

thes

Flgure 3 presents as an example a montage of traces of the wave fiecld excited at the
coint Xy = 6.4 km and scattered by a cylindrical inclusion with an elliptical cross sec-
clon and velocity ¢, = 0.9 km/sec.

Figure 4 illustrates the result of reconstructing the cylindrical inclusion with =
_rcular cross section. Weemphasize thatalong with the horizontally dositioned slaments
the velocity interface we also reconstructed well the vertically situated el

ole)
1]
g -
® @
3
ot
u

of the surface. The reconstruction of these surface elements evidently cannot be ex-
plained by ray theories, and it is conditioned by purely wave effects. We also note the
correct reconstruction of the lower slements of the surface which for the normal ray ac-
cording to kinematic considerations shouldbe vlaced in the center of the circls. However,
tne use of theredundant multiaspect information and consideration of “he wave nature o2
e crocess ¢f scattering let us obtain their correct position.

- Flgure 3> illustrates the results of reconstructing the cylindrical inclusicn wish
an =21liptical cross section.

We note that although in the examples of section b) the parameter € »> 1, i.=2., the
formal conditions of applicability of the theory we devéloved are not fulfilled, the autho
belleves that qualitatively the result of visualization of these inhomogeneities is very
good.

APPENDIX
We will investigate the spectrum Z(x, p) of the function F(p, z). Having usad re-
lationships (17) and (18) and the identity
S[S(x+ xg) — = —\dqé(E\—&/-—q)ﬁ(q—‘A"’* Xe), (28}
we ootain
F(Zx,?p)==—i—‘/1+47' d*gque[ ®)*] X
: P
X 0[5 — (q—n)l(V'—(q+x)“-l-VS'—-(q-—x)‘)/(V;'—(q+x)=><
XVF=—(a—2)[6(2p+ VE—@+# +VF—(1—»p) + (29)

+8(2p—VE—@+ o —VE—(q—=")].

From relationship (29) we can see that F(k, p) = F(k, -p). For definiteness we will look
at the case p > 0; then the first of the § functions in the right side of formula (28)
makes a zero contribution. To calculate the remaining integral, we note that the equation

1= VIi—qror—VE-(q=% =0 (30)

has the real roots




e

~ < <
for « + 0 <

) o] 2

here ¢ is the angle between the vectors q and «.

gy

3

N L] R Rl s GE R (32)
qaq ’

then

o 1 2

F (2%, zp)a-;_1/1+4l‘?§d§-§e<§2—'p=—x=>f ded (2 — (% + 3] X
Py 0 (33)
X B[8 — (% — q)°] - p*(p* + ®*cos® ) .

From this 1t is sy to obtain the sought relationships (19).
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